برآورد میزان رسوب حوضه رود ارس با استفاده از شبکه های عصبی مصنوعی (مطالعه موردی: زیرحوضه دره رود)

Authors

Abstract:

    یکی از روش­های نوین در زمینه­ پیش­بینی­ فرآیندهای هیدرولوژیکی و ژئومورفولوژیکی  شبکه­های عصبی مصنوعی از مؤلفه­های هوش مصنوعی است که در جهت پیاده­سازی ویژگی­های شگفت انگیز مغز انسان در یک سیستم مصنوعی می­کوشند و ابزاری قدرتمند در زمینه­ی مدل­سازی و پیش­بینی پارامترهای ژئومورفولوژی­­اند که در این پژوهش جهت برآورد میزان رسوب حوضه­ رود ارس استفاده شده است. بدین منظور از آمار دبی، رسوب و بارش ماهانه ایستگاه هیدرومتری بران واقع در حوضه آبریز دره رود از زیر حوضه­های مهم حوضه­ رود ارس در دشت مغان در طول دوره آماری 34 ساله (سال آبی 54-53 تا 87-86) استفاده گردید. بدین صورت که میزان دبی و بارش به عنوان ورودی­های شبکه عصبی مصنوعی و میزان رسوب به عنوان خروجی شبکه در نظر گرفته شدند. به منظور پیاده­سازی مدل از امکانات و توابع موجود در محیط برنامه نویسی نرم افزارهای MATLAB/2010 و SPSS/21 بهره گرفته شد. سپس به ارزیابی عملکرد مدل، از طریق معیارهای آماری از جمله ضریب تعیین، مجذور میانگین مربعات خطا، میانگین مربعات خطا، میانگین مطلق خطا، ضریب همبستگی و همچنین میانگین درصد نسبی خطا پرداخته شد. نتایج به دست آمده ضمن تأیید توانایی مدل شبکه عصبی مصنوعی نشان داد که انطباق خوبی بین مقادیر پیش­بینی شده و مشاهداتی وجود دارد به‌طوری که میانگین خطای این مدل با داده­های مشاهداتی برابر 9/0 درصد  و ضریب همبستگی 99/0 است که در سطح 01/0 نیز معنی­دار گشته است. نتایج حاصل از این پژوهش نشان داد که مدل شبکه‌ عصبی مصنوعی از دقت بالایی در برآورد میزان رسوب در حوضه مورد بررسی برخوردار است. نتایج حاصل می­تواند در مدیریت و برنامه­ریزی حوضه­های آبخیز و  مدیریت منابع آبی و طبیعی بویژه در بخش­های کشاورزی، صنعت، شرب و همچنین  پیش­بینی وضعیت رسوب­گذاری در مخزن سدها مفید باشد.  

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

پیش بینی تغییرات برخی متغیرهای اقلیمی حوضه آبخیز دره رود ارس طی دهه های آتی با استفاده از مدلهای تغییر

 تغییرات اقلیمی یکی از ویژگیهای طبیعی چرخه اتمسفری می باشد که بر اثر ناهنجاری ها و یا نوساناتی در روند پارامترهای هواشناسی، از جمله بارندگی و دما حاصل می شود. میزان انتشار گازهای گلخانه ای در دهه های اخیر به طور قابل ملاحظه ای افزایش داشته است. با توجه به اینکه افزایش این گازها در اتمسفر زمین؛ باعث تغییر درمتغیرهای اقلیمی کره زمین گردیده است لذا ضرورت دارد این تغییرات شبیه سازی شده و تغییرات اح...

full text

مدل سازی برآورد منطقه ای رسوب معلق در حوضه آبریز دره رود اردبیل

بار معلق رودخانه شامل مواد معدنی و آلی است که در جریان رود به ویژه جریان‌های آشفته، پخش شده و بدون تماس با بستر تا مسافت‌های زیادی جابجا می‌شود. مواد معدنی مشخصا شامل ذراتی در اندازه ی رس تا دانه‌های ماسه است. بار معلق برحسب غلظت، دبی (جریان جرم رسوب در هر واحد زمانی) که تحت عنوان" بار" از آن یاد می‌شود و نیز پراکنش اندازه ذرات (نسبت بار به ذراتی با اندازه ای مشخص) تعیین می‌گردد. ذرات رسی_سیلت...

full text

مقایسه روش های شبکه عصبی بیزین و شبکه عصبی مصنوعی در تخمین رسوبات معلق رودخانه ها (مطالعه موردی: سیمینه رود)

زمینه و هدف: شبیه سازی و ارزیابی آورد رسوب رودخانه از جمله مسایل مهم در مدیریت منابع آب می باشد. اندازه گیری مقدار رسوب به روش های متداول عموماً مستلزم صرف وقت و هزینه زیادی بوده و گاهی از دقت کافی نیز برخوردار نمی باشد.  روش بررسی: در این پژوهش تخمین رسوب رودخانه سیمینه رود واقع در استان آذربایجان غربی، با استفاده از شبکه عصبی بیـزین مورد بررسی قرار گرفته و نتایج آن با روش های مرسـوم هوشمند هم...

full text

الگوی جدید بارش- رواناب حوضه آبریز هلیل رود با استفاده از مدل هیبرید شبکه عصبی- موجکی

برآورد سیلاب و مدیریت آن از دیرباز مورد توجه کارشناسان و مدیران علوم محیطی بوده است. برای این امر روش‌‌های بسیاری وجود دارد که یکی از چشم‌گیرترین آن‌‌ها استفاده از شبکه‌‌های عصبی مصنوعی است. در این تحقیق، مدل بارش- رواناب حوضه آبریز رودخانه هلیل رود در جنوب‌شرق ایران ارائه شده است. ظهور تئوری‌های توانمند مانند منطق فازی و شبکه‌‌های عصبی مصنوعی(ANN)، الگوریتم ژنتیک و موجک تحولی عظیم در تحلیل رفت...

full text

تحلیل مقایسه عملکرد شبکه های عصبی مصنوعی ومدل های رگرسیونی پیش بینی رسوب معلق مطالعه موردی: حوضه آبخیز اسکندری واقع در حوضه آبریز زاینده رود

یکی از جنبه های حائز اهمیت در مدیریت محیط در ژئومورفولوژی کاربردی حل مشکل برآورد رسوب یک سیستم رودخانه ای می‏باشد. هدف این مطالعه ارزیابی عملکرد مقایسه ای دونوع شبکه عصبی مصنوعی (مدل ژئومورفولوژیکی و مدل غیر ژئومورفولوژیکی) و دو نوع مدل رگرسیونی (مدل توانی ومدل غیر خطی چندگانه) برای پیش بینی بار رسوب معلق حوضه اسکندری در حوضه آبریز زاینده رود می‏باشد. مدل‏ها براساس آمار 104 حادثه وقوع همزمان ثب...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 22  issue 65

pages  141- 162

publication date 2018-10-23

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023